
Time, Bitcoin, and the
Lightning Network

Joseph Poon

SF Bitcoin Devs - July 6, 2015

Topics

● Bitcoin, Timestamping, and Ordering
● Financial Systems and Time
● Quick refresher on Lightning Network
● Survey of time-related BIPs
● Enforcing Off-Blockchain ordering of

transactions on the Lightning Network

The Blockchain is a Timestamp

● On-chain transactions are ordered because
Bitcoin is a timestamping system
○ Using the blockchain for unordered data

storage is sort-of missing the point, but if
you’re going to, use a merkle tree

● Ordering events to prevent double-spending
is why the entire thing works
○ It’s in the Bitcoin whitepaper

Nakamoto, Satoshi (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. http://www.bitcoin.org/bitcoin.pdf

http://www.bitcoin.org/bitcoin.pdf

Quick Review: (Decentralized) Ordering
of Events to Prevent Double-Spending

● Alice sends the same 1 BTC to both Bob
and Carol
○ Only one of the spends enter into the blockchain
○ Chain is ordered, so one can be sure a spend

happened before another
○ Can’t assert something happened in the past
○ Double-spends invalidate blocks, so miners cannot

maliciously mine a fraudulent block in isolation
(without reorgs)

Alice sends to Bob
0.1 BTC
(Alice owns)

0.1 BTC
Output: Bob

Block 350,000

Green: Entered into the blockchain
White: Unconfirmed transaction

Alice sends to Bob: Confirmed!
0.1 BTC
(Alice owns)

0.1 BTC
Output: Bob

Block 350,001

Alice attempts double-spend
0.1 BTC
(Alice owns)

0.1 BTC
Output: Bob

0.1 BTC
Output: Carol

Block 350,200

Alice is trying to be a jerk!
She’s trying to double-spend
the same output to Carol, but
she already sent it to Bob at
Block 350,001.

Alice fails double-spend
0.1 BTC
(Alice owns)

0.1 BTC
Output: Bob

0.1 BTC
Output: Carol

The network already
accepted Alice’s spend in
block height 350,001. Any
future spends is rejected by
miners and the Bitcoin P2P
network

Problem! What if you wanted to conduct
transactions off-blockchain securely?

● Blockchain transactions are slow and not
that scalable
○ Multi-gigabyte to multi-terabyte blocks if bitcoin really

started picking up mass use
○ 10-minute confirmation times too slow
○ Why should the entire world know you bought coffee

and process the transaction?
● We need order off-chain and net-settle

everything without trust or counterparty risk

Time and Financial Systems

● If one wishes to conduct transactions off-
chain (for scalability, speed, etc.), why not
see how existing systems operate?

● Existing and legacy financial systems are
also all about time & ordering of events
○ They’ve had to solve distributed systems problems

with money for a really long time!

Distributed Time Locks
● Bank-to-bank transfers
● Time Locking as a means for atomicity

(clearing) is common in financial systems
○ Different obligations to occur within a certain

timeframe (overnight, 3 business days, etc.)
○ VISA’s 180-day “confirmation” (dispute period)
○ T+3 in equities

■ Flows through to security models in systemic risk
analysis, e.g. Regulation T

Clearinghouses for Scalability

● Assuming distributed time-locks, establishing
lots of peer-to-peer transactions are a pain,
why not net settle across a multi-hop
network?
○ Correspondent Banking
○ Clearinghouses

Campbell-Kelly, Martin (2010) Victorian data processing. Communications of
the ACM, Vol.53 (No.10). pp. 19-21.

Campbell-Kelly, Martin (2010) Victorian data processing. Communications of
the ACM, Vol.53 (No.10). pp. 19-21.

Bitcoin can do better!
● All the prior example systems require trust

○ Failure of trust breaks everything, nobody can trade
○ Multisig & scripting allows for decentralized contracts

● Removing the need for trust and reputation
eliminates entry costs
○ Near-zero costs to enter networks reduces fees to

near-zero
● The blockchain as court

○ Programmatic Adjudication

Lightning Network Overview

● A network of Bitcoin payment channels
○ Real bitcoin transactions which can be net-settled

on-chain at any time
● Hashed Time Lock Contract: Payment

conditional upon knowledge of secret
preimage R which produces known
cryptographic hash H within n blocks

Alice

Dave

Alice wants to pay Dave 0.01 BTC. Dave tells Alice, “Here’
s H, if you know R, consider your payment fulfilled”

H

R H

Alice

Bob
Carol

Dave

Alice doesn’t have a direct channel open with Dave, so she
finds a route.

H

R H

Bitcoin Lightning Network

Alice

Bob Carol

Dave
Alice & Bob create an HTLC output in the payment
channel to pay Bob 0.01 BTC, with a 3-day
nLockTime refund back to Alice

RHH

HTLC
 3-

da
y

nL
oc

kT
im

e

H

Bitcoin Lightning Network

Alice

Bob Carol

Dave

RHH

HTLC
 3-

da
y

nL
oc

kT
im

e
HTLC 2-day
nLockTime

Bob & Carol create an HTLC output in the payment
channel to pay Carol 0.01 BTC, with a 2-day
nLockTime refund back to Bob

H H

Bitcoin Lightning Network

Alice

Bob Carol

Dave

RHH

HTLC
 3-

da
y

nL
oc

kT
im

e
HTLC 2-day
nLockTime

Carol & Dave create an HTLC output in the payment
channel to pay Dave 0.01 BTC, with a 1-day
nLockTime refund back to Carol

Dave can now get 0.01 BTC if she discloses R to
Carol

H H

HTLC 1-day

nLockTime

Bitcoin Lightning Network

Alice

Bob Carol

Dave

RHH

HTLC
 3-

da
y

nL
oc

kT
im

e
HTLC 2-day
nLockTime

Dave discloses R to Carol within 1 day. Carol now
has enough information to pull funds from Bob.

Carol and Dave agree to update the balances in the
channel instead of broadcasting on the blockchain

H H R

0.01 BTC

Bitcoin Lightning Network

Alice

Bob Carol

Dave

RHH

HTLC
 3-

da
y

nL
oc

kT
im

e

Carol discloses R to Bob within 2 days. Bob now has
enough information to pull funds from Alice.

Bob and Carol agree to update the balances in the
channel instead of broadcasting on the blockchain

H H RR

0.01 BTC
0.01 BTC

Bitcoin Lightning Network

Alice

Bob Carol

Dave

RHH

Bob discloses R to Alice within 3 days. Alice can
prove she sent funds to Dave.

Alice and Bob agree to update the balances in the
channel instead of broadcasting on the blockchain

H H RR

R

0.01 BTC
0.01 BTC

0.0
1 B

TC

But how exactly can you order the transactions
off-chain -- without hitting the blockchain every
time a payment is made; how do you enforce
how much the counterparties own in each
channel?

Time-related BIPs

● BIP65: OP_CHECKLOCKTIMEVERIFY
○ Peter Todd

● BIP68: Consensus-enforced transaction
replacement signalled via sequence
numbers
○ Mark Friedenbach

Example Bitcoin Transaction
{
 "hash":"f4184fc596403b9d638783cf57adfe4c75c605f6356fbc91338530e9831e9e16",
 "ver":1,
 "vin_sz":1,
 "vout_sz":2,
 "lock_time":0,
 "size":275,
 "in":[
 {
 "prev_out":{
 "hash":"0437cd7f8525ceed2324359c2d0ba26006d92d856a9c20fa0241106ee5a597c9",
 "n":0

 “sequence”:UINT_MAX
 },
 "scriptSig":"
304402204e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd410220181522ec8eca07de4860a4
acdd12909d831cc56cbbac4622082221a8768d1d0901"
 }
],
 "out":[……...

BIP65: CHECKLOCKTIMEVERIFY

● New Bitcoin opcode lets you script time
○ The most expensive timestamping system in the

world can't even tell time in its own scripts?
● Script opcode evaluates as true (lets you

spend) after a particular block height
● Useful for committing to the world some time

dependency OR for limited malleability fixes

BIP65 Example Payment Channel
IF
 <Bob pubkey> CHECKSIGVERIFY
ELSE
 <expiry time> CHECKLOCKTIMEVERIFY DROP
ENDIF
<Alice pubkey> CHECKSIG

BIP65 Example Payment Channel
● Good:

○ Money will eventually return /w mutated transaction
● Limitations:

○ Single-funder, unidirectional, limited time duration
○ Lightning Network not compatible (requires a

different soft-fork)
● Very useful for proving commitment to a

particular date, non-revocability when
compared to nLockTime

BIP68: Sequence Numbers
● Original intention for Sequence Numbers

looks to be related to off-chain transaction
replacement

● Redefines Sequence Numbers to actually
work
○ Current behavior is non-functional
○ Prior behavior doesn’t work; impossible to guarantee

miners will pick the highest and block propagation,
requires actively watching the bitcoin P2P network

BIP68: Sequence Numbers
● New Behavior:

○ If the sequence number field is filled in, require the
output being spent to have a relative minimum
number of confirms

○ E.g. Child has sequence number of 500. There must
be 500 blocks between the parent transaction being
spent and the child transaction

○ This number is relative to block inclusion of the
parent

Alice and Bob have Transaction A&B
Transaction A

0.1 BTC
Multisig Alice & Bob

Transaction B1

0.1 BTC
Output: Bob
Sequence No. 200

Block 349,999

Green: Entered into the blockchain
White: Unconfirmed transaction

Presume Alice and Bob have both
Transaction A and B1.

Alice and Bob don’t know yet when
Transaction A will enter into the
blockchain.

Alice Broadcasts a Transaction
Transaction A

0.1 BTC
Multisig Alice & Bob

Transaction B1

0.1 BTC
Output: Bob
Sequence No. 200

Block 350,000

Green: Entered into the blockchain
White: Unconfirmed transaction

Transaction A enters into the
blockchain at block height 350,000

Transaction B1 is not yet valid.
Transaction B1 will only be valid at
350,200

Alice Broadcasts a Transaction
Transaction A

0.1 BTC
Multisig Alice & Bob

Transaction B1

0.1 BTC
Output: Bob
Sequence No. 200

Block 350,150

Green: Entered into the blockchain
White: Unconfirmed transaction

Transaction A enters into the
blockchain at block height 350,000

Transaction B1 is not yet valid.
Transaction B1 will only be valid
after 200 blocks have elapsed after
Transaction A has entered into the
blockchain.

Alice Broadcasts a Transaction
Transaction A

0.1 BTC
Multisig Alice & Bob

Transaction B1

0.1 BTC
Output: Bob
Sequence No. 200

Block 350,200

Green: Entered into the blockchain
White: Unconfirmed transaction

Transaction B1 can enter into the
blockchain now that 200 blocks have
elapsed. The money is now Bob’s.

Sequence numbers are useful
compared to nLockTime when you
don’t know when Transaction A will
enter into the blockchain!

Why This is Useful

● Relative to parent’s block height is very
important, you can establish conditional
rules which are valid after a transaction
enters into the blockchain
○ nLockTime does not permit this since it relates to

hard dates
● You can create outputs that are revocable by

spending with different sequence numbers

Alice&Bob have Transaction A, B1 & B2
Transaction A

0.1 BTC
Multisig Alice & Bob

Transaction B1

0.1 BTC
Output: Bob
Sequence No. 200

Block 349,999

Green: Entered into the blockchain
White: Unconfirmed transaction

Let’s go back in time. Presume Tx A
has never entered into the
blockchain. However, there is a new
transaction, B2! Let’s see what
happens...

Transaction B2

0.1 BTC
Output: Alice
Sequence No. 0

Alice Broadcasts a Transaction
Transaction A

0.1 BTC
Multisig Alice & Bob

Transaction B1

0.1 BTC
Output: Bob
Sequence No. 200

Block 350,000

Green: Entered into the blockchain
White: Unconfirmed transaction

Bob when signing B2, has
functionally revoked transaction B1,
as if it doesn’t exist! (Provided that
Alice watches the blockchain).

If either party can broadcast Tx A...

Transaction B2

0.1 BTC
Output: Alice
Sequence No. 0

Alice Broadcasts a Transaction
Transaction A

0.1 BTC
Multisig Alice & Bob

Transaction B1

0.1 BTC
Output: Bob
Sequence No. 200

Block 350,001

Green: Entered into the blockchain
White: Unconfirmed transaction

If either party can broadcast Tx A...

Alice can immediately take the
money by broadcasting B2, since
there is no sequence number
limitation!

Bob has revoked
transaction B1! Transaction B2

0.1 BTC
Output: Alice
Sequence No. 0

Revoking Transactions

● By creating unbroadcasted spends with
lower (or no) sequence number requirement,
it’s possible for two parties to conduct
transactions off-chain

● Spends from transactions create a “dispute
resolution period” whereby either party may
dispute it with transactions which do not
require a sequence number

Application for Lightning Network

● This isn’t a requirement for the Lightning
Network (it can use nLockTime), but the
benefit is channels can remain open
indefinitely!

● With malicious counterparties, they can lock
up funds for only a very limited number of
time

How Lightning Network Channels Work

● Each “Commitment” has two versions with
the same outputs, one for Alice and one for
Bob
○ Only Alice can broadcast Alice’s version, only Bob

can broadcast Bob’s version
○ The final payout is locked via Sequence Number
○ To revoke the commitment, make the final payout to

pay 100% of the funds to the counterparty as a
penalty

Alice and Bob Have a Channel Open

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,000

Green: Entered into the blockchain
White: Unconfirmed transaction

Channel open with 0.1 BTC. Spent
using Commitment 1, current
balance: 0.5 Alice / 0.5 Bob

Alice can broadcast
Commitment 1a

Bob can broadcast
Commitment 1b

Either can broadcast all
Revocable Transactions

**Simplified model

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Alice Broadcasts Commitment 1a

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,100

Green: Entered into the blockchain
White: Unconfirmed transaction
Red: Already spent by another tx

Let’s say Alice wants to close
out the channel. No trust
is needed, they can’t steal
money!

Alice broadcasts
Commitment 1a. She cannot
broadcast Commitment 1b,
only Bob can do that.

The righthand path is now
invalidated, since the output
has been redeemed.

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Alice has to wait!

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,100

Alice or Bob can broadcast
Revocable Transaction 1a,
but only after 200 confirmations.

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

After 200 confirmations, finished!

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,300

Either party broadcasts Revocable
Transaction 1a, and now the
channel is fully closed out.

All parties have their money
on-blockchain.

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Revoking Transactions

Commitment 2a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 2a

0.4 to Alice / 0.6 to Bob
Sequence No. 200

Block 350,000

Green: Entered into the blockchain
White: Unconfirmed transaction

Instead of closing out the channel
they want to update their
balances to be:
0.4 Alice / 0.6 Bob
in Commitment 2

Cool…. BUT WAIT!
What about Commitment 1!
Alice can still broadcast
Commitment 1a and she
has more money.

**Simplified model

Commitment 2b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 2b

0.4 to Alice / 0.6 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revoking Transactions

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,000

Green: Entered into the blockchain
White: Unconfirmed transaction

Let’s see what happens to
Commitment 1 only
(Commitment 2 is still there, it’s
just not going to be shown
because of space limitations)

Both parties sign Breach
Remedy Txes

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Breach Remedy 1a

1.0 to Bob
Sequence No. 0

Breach Remedy 1b

1.0 to Alice
Sequence No. 0

Commitment 2a
Multisig Alice & Bob
Only Alice can
broadcast

Commitment 2b
Multisig Alice & Bob
Only Bob can
broadcast

Revoking Transactions

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,000

Only the newest Commitment
(Commitment 2) is valid.

If anyone broadcasts an
incorrect Commitment, they
will lose all their money!

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Breach Remedy 1a

1.0 to Bob
Sequence No. 0

Breach Remedy 1b

1.0 to Alice
Sequence No. 0

Enforcing Order Via Penalties

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,100

Let’s see what happens when
Alice incorrectly broadcasts
Commitment 1a, when she
should’ve broadcast
Commitment 2a… Commitment 1b

Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Breach Remedy 1a

1.0 to Bob
Sequence No. 0

Breach Remedy 1b

1.0 to Alice
Sequence No. 0

Enforcing Order Via Penalties

Commitment 1a
Multisig Alice & Bob
Only Alice can
broadcast

Revocable Transaction 1a

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Block 350,101

Let’s see what happens when
Alice broadcasts
Commitment 1a…

Bob can take all the money,
immediately, because there is
no sequence number.

Commitment 1b
Multisig Alice & Bob
Only Bob can
broadcast

Revocable Transaction 1b

0.5 to Alice / 0.5 to Bob
Sequence No. 200

Channel 1.0 BTC
Multisig Alice and Bob
output

Breach Remedy 1a

1.0 to Bob
Sequence No. 0

Breach Remedy 1b

1.0 to Alice
Sequence No. 0

Result…
● Both parties should only broadcast the

current Commitment Transaction
○ If they don’t they will lose ALL their money, because

they have given the other party power to take all
their money immediately

○ The other party has to watch the blockchain
periodically, higher sequence numbers mean less
frequent checks (e.g. monthly). Can be delegated to
a 3rd party without custodial risk.

What this means

● It’s possible to order transactions off-chain
○ These are real bitcoin transactions, this isn’t some

altcoin or disconnected trusted system
● Consensus is achieved through the threat of

on-chain enforcement
○ Everything stays off-chain if everyone is cooperative
○ Take all the money as a penalty with hostile/invalid

state commitments to the blockchain.

Lightning Network
● It’s possible to create channels that stay

open an effectively unlimited amount of time
○ Just keep revoking old transactions!

● With these channels as building blocks,
payments can route over an untrusted
network!
○ You can embed HTLCs in these channels
○ Payments can be made completely off-chain, only

settling on-chain when non-cooperative

